If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-10w+1=0
a = 6; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·6·1
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{19}}{2*6}=\frac{10-2\sqrt{19}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{19}}{2*6}=\frac{10+2\sqrt{19}}{12} $
| 2(w+8)-5w=7 | | (7x-6)(x+8)=0 | | 4/x=13/x+3 | | 4(x+6)2+20=0 | | -5(x-39)=-25 | | (5y-21)+14=180 | | -33=8y+5(y-4) | | 168=1/2(12)16+1/2(12)b2 | | (3x-1)-4(x+2)=20-3(5-2x) | | 16t^2-56t+13=0 | | 52=2x+6 | | 5x+2-3x=2x+5 | | 25x-9=-215 | | 4n-8n-10+3=11 | | q/5+7=10 | | 25x-12-3=-215 | | 3x+1=5× | | 18=7u+5(u+6) | | 162-6x3=0 | | (a+7)/(-2)=-12 | | 32+x=115 | | 2x-x+7=x+4+3 | | 4x+5-6(x+1)=-5x+5 | | -14x+16=-12 | | 7z+3z=9z-7 | | (p-1)/(-3)=-4 | | f(18)=6(18)-12 | | 4(x-6)-6x=-34 | | (n+4)/8=-2 | | 288t-16t^2=0 | | 42m+16-18m+12=24(m+1)+4 | | 2x-8+2(2x+4)=-3(x+4) |